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e The work in this thesis is an addition to the study of trajectory
i sensitivity of optimal control systems, The parameter with respect to
?5 which sensitivity is studied is a small undesirable time delay that might
!? occur in a system designed nominally with zero delays. A design strategy
is proposed to guarantee low sensitivity of optimal control systems, A
numerical algorithm is presented to solve the resulting necessary condi-
tions of optimality. It is applied to a practical example. Encouraging

results are obtained.
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INTRODUCTION

Small time-delays are usually expected to occur in systems due
to several reasons, among which are the effect of mass and/or energy
transport and the finite measuring time of the system outputs. These
delays are very often neglected. However, they might cause significant
deviation from the nominal system trajectory. Optimal systems with a delay
have been studied by several authors.r Chyung and Lee [2] obtained necessary
and sufficient conditions of optimality and dealt with the questions of
existence:and uniqueness of the optimal control. Sannuti and Reddy [10]
dealt with the problem by constructing an asymptotic power series solution
in terms of time delay. That asympLotic approximation procedure was aimed
at improving a 'nominal design' in which the small time delay is neglected.
Mee [8] proposed a design method which calculates optimal linear feedback
laws for the system, but ensures that the effect of control delays is kept
small in closed loop. Inoue and Akashi [1l] presented a synthesis method of
a suboptimal control for a regulator problem, in which the optimal control
is expanded into Maclaurin series in terms of the delay time and the first
two or more terms are used to yield a suboptimal control. Kleinman [24]
investigated systems with observation noise and showed that the optimal

control for such systems can be generated by the cascade combination of a

Kalman filter and a least mean squared predictor.

In this thesis we are concerned with the design of optimal control
systems in a manner that makes their trajectories insensitive to small-time
delays. The design strategy proposed here is to augment a standard
quadratic performance index with a term of sensitivity measure. For deter-

ministic systems, the minimization process is carried out using the well-
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imown Minimum Principle. This method was proposed by Stavroulakis and
Sarachik [3], and extended to Discrete-time Systems by Cruz and Sawan [19].
Subbayyan and Varthilingam [20] reconsidered the same problem apparently
without knowing about the work of Stavroulakis and Sarachik [3]. For
stochastic systems, the minimization process of the augmented performance
index is carried out by transforming the problem into an equivalent static
minimization problem [22]. To apply the above methods to our problem of

interest; sensitivity to small time-delays, we use the notation of a

sensitivity function introduced by Inoue, Akashi, Ogino and Sawaragi [1].

Several cases are considered in this thesis. The delay is
assumed to occur either in the plant (Chapters 3 and 5), or in the feedback
path (Chapters 4 and 6). Several system structures are discussed. For
each case, both stochastic and determiniztic systems are studied. The

proposed design strategy is applied to a practical example. The numerical

results are analyzed and encouraging conclusions are obtained.
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CHAPTER 2

PROBLEM FORMULATION AND METHODS OF ATTACK

2.1. Deterministic Systems

Systems considered in this thesis are of linear dynamics with
feedback control. We consider the cases of state feedback and output
feedback, as well as the case where state reconstruction is used. 1In the
latter case we may use a full-order observer to reconstruct all the
states, or a reduced-order observer to reconstruct the unmeasurable states

only. The state equation is of the form

x(t) = A x(t) + C u(t) 2.1)

with x(0) = X,

where x(t) €R™, u(t) €R™ and A and C are matrices of appropriate dimensions.

The output equation is

y(t) = E x(t) ' (2.2)

Vhere y(t) GRZ and E is a matrix of appropriate dimensions. The observer

dynamic equation, if used is assumed to be of the form

z(t) = F z(t) + G y(t) (2.3)

with z(0) = z,

k . . . .
» k *=nand F and G are matrices of appropriate dimensions.

where z(t) €R
We may have a state feedback control of the form
u(t) =D x(t), (2.4)

an output feedback control of the form

u(t) =D y(t), (2.5)

i
|
i
i
i
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or, if an observer is used, a feedback control of the form

u(t) =D z(t) + K y(t) (2.6)

where D and K are matrices of appropriate dimensions.
We will consider the different possibilities of occurrence of
a delay in the system. If a delay, u, is expected to occur in the

plant, the state equation will be of the form

x(t) = A x(t) + B x(t-p) + C u(t) Q2.7
with x(0) = X
along with the control law (2.4), (2.5), or (2.6). If a delay, uw, is
expected to occur in the feedback path, it will appear in the control law
(2.4), (2.5), or (2.6) with the state equation (2.1) unchanged. If we

have all the states available, we will use a state feedback control of

the form
u(t) = D x(t-u) (2.8)

If we have an output feedback control, we will use a control law of the

form
u(t) = DE x(t-u) 2.9)

If an observer is used, one of the following control laws will be applied:

u(t) =D z(t-u) +K y(t) (2.10)

u(t) D z(t) + KEx(t-u) (2.11)

It should be noted that the control law (2.10) is not as likely to be
expected as (2.11) since the observer is constructed on the control
side. The purpose of considering that case is to cover all the

possibilities of delay occurrence.




The problem under consideration is to design a system with zero
time Helay, which we will refer to as the nominal design, such that a

quadratic performanca index is minimized and semsitivity to small time

delays is reduced. In other words, we require the trajectories oi the system

with the occurrence of a small time delay, as described above, to be as close
as possible to the nominal trajectories, i.e. thos of the system wﬁen the time
delay is zero.

The standard linear regulator problem is to minimize a quadratic
performance index of the form:

[~}
3 -21 [ x'qx + u'Ruddt (2.12)
o

where Q20 and R>0 are matrices of appropriate dimensions, for w=0. But if
the actual system has some delay, due to some of the reasons discussed in
the Introduction, and we use the standard problem solution, then the actual
trajectories may be unacceptable compared to the néminal ones, obtained for
zero delays. Reducing this sensitivity to small time delays mav be achieved
by trying to adjust Q and R in the standard linear regulator problem. For
example decreasing R will result in a larger control which usually yields
low sensitivity. However this approach is not convenient because it has no
direct theoretical basis and it does not have a direct handle on the sensi-
tivity of the different trajectories. 1In other words there is no systematic .
way to reduce the sensitivity of a particular trajectory of the system. All
that can be done is to keep trying some different values of Q and R and
observing the trajectories in each case to examine their semsitivity. In order

to have a direct handle on sensitivity, we ought to define some sensitivity

measure and incorporate it in the performance index to be minimized.
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For our problem, sensitivity reduction can be achieved by defining
the trajectory semsitivity function [1l] as being the first partial derivative
of the state vector with respect to the delay, evaluated at the nominal value

of the delay, i.e. zero. Using the notation introduced above, we write

parameters to be adjusted to get a desirable behavior., It is noted that the

o (t) = ) (2.13)
X 5“ uao
where o_(t) €R® and cx(O) = 0. To reduce the sensitivity with respect 4
x

R to the delay, u, the semsitivity function, defined by (2.13), is included
i
1{ in the performance index to be minimized with a suitable ;
> F
& weighting matrix, S 2 0, of appropriate dimensions. The augmented performance i
* index to be minimized is of the form 1
§ .. 1 (‘cn ;‘
1=ef5 | (x'Qx +u'Ru+0!So, )dt] (2.14) :
N 3
where E{+} denotes the expected value over the initial condition X . This E g
averaging process is required to avoid the dependence of the necessary ; %
3 .
yﬁj conditions to be derived on the initial condition Xye Q,R and S are design ; %
' i
[~
;

choice of S with specific weighting is reflected directly on the sensitivity
of the different state trajectories. This direct handle of S on sensitivity

will be investigated in the examples presented in Chapter 7. It is noted that

cz(t), if an observer is used, is not introduced in the performance index,

J, because what we practically care for is the plant trajectory x(t).

B
Now we present a brief description of the minimization process i }

which will be carried out to derive the necessary conditions for J, given |
by (2.14), to be minimal subject to a control law of ome of the forms 1

described above. The procedure consists of the following steps:




1. Obtain the dynamic equation of the closed loop sensitivity functions
cx(t) and cz(t), in case of using an observer, by calculating the

first partial derivative of the state equation (2.1), (2.7) and (2.3)

after applying the proper control law. Then substitute with the
nominal value of the delay, i.e. zero, in all the equations.

2. Form the Hamiltonian, after applying the proper control law, as follows:

= ! ' : ' : .
-‘ H xQx+uRufchcx+)\xx +)\dxcrx (2.15) ]
' 1
9; or, if an observer is used,
H=x'0x +u'Ra +a' S0 + A x +A_Gq 1
[ X X X g, X
! .i
y +kzz +lc a, (2.16) ‘3
z
i?‘ Xx’ kcx, Kz and Xcz are appropriate Lagrange multipliers and are
¢ assumed to have the following relationms:
Xx = Kllx + Klzcx (2.17a)
vf_{ xcx =Ky x +Ky,a (2.17b)
or, if an observer is used,
}, lx = Kllx + Klzz + K13cx + K14gz (2.18a)
A T Krx Kz K9, + K0, (2.18b)
A, = + +
cx K31x KBZZ K33Gx + K34cz (2.18¢)
A L L LA A (2.184)
where K, ;; 1, j=1, 2, 3, 4 are constant matrices of appropriate ;

1j i
dimensions. '




3. Apply the minimum principle:

L 2.19
xx 3% (2.19%a)
L = . S
Ng A (2.19b)
x x
y = - M (2.19¢)
4 oz
: A, = - - (2.194) |
- 7z 2 1
j; 4. Equate ix’ iz, ic and i evaluated in (2.19a-d) to the corresponding ﬂ
X z
- values obtained by differentiating (2.18a-d) or (2.17a-b). Hence get
"a

~ equations for Kij

equations are linear algebraic of the Lyapunov form.

; i, 3=1, 2, 3, 4. 1t will be seen that such

5. The optimal feedback gain matrices satisfy the following necessary

conditions: §
i
® 2m i
o=c{ > de} (2.20a) |
° i
-}
0=l [ 2 ax) (2.20b)
J 3

where E{ ]} denotes the expected value over the initial conditiom X,.

It will be seen that, for given values of K,., the necessary conditions

i]
(2.20a-b) would generally result in linear equations of the form
N
D= ZUDV, +P (2.21)
i7 71
i=]
where Ui’ Vi and P are matrices of proper dimensions, evaluated in

terms of Kij; i, §=1,2,3,4, and N is a nonnegative integer.

A numerical algorithm for solving equation (2.21) will be presented

in section 2.3. It will also be seen that in the cases of the

._—-——-——-——'—"_‘“ —




delay occurrence in the plant, equation (2.21) will be as simple as
D=P (2.22)

Since P, Ui and V, contain Kij; i, j=1,2,3,4 which, in turm,

i

depend on D, we use the following iterative algorithm to compute the

optimal D and K, in case of using an observer:

1. Start with an initial guess for D

2. Solve the Lyapunov-type equations to evaluate Kij; i,j=1,2,3,4.

3. Compute a new value of D from equation (2.22) or by solving
equation (2.21).

4. Compare the new value of D with the old one. If it is close enough,

stop. If it is not close enough, start a new iteration repeating

steps 2 and 3 using the new value of D.

2.2. Stochastic Systems

Analogous to the deterministic systems considered in section 2.1,
we will study linear dynamic systems with feedback controls, assuming
disturbance occurrence in both the state equation and the output equation.

The state equation in this case is
x(t) = A x(t) +C u(t) + wl(t) (2.23)

with x(0) ='xo

where x(t) ERF, u(t) €R?, wl(t) GRP and A and C are matrices of appropriate

dimensions. The output equation is

y(t) =E x(t) + w, (t) (2.24)

2 and E 1s a matrix of appropriate dimensions.

2
where y(t) €R", wz(t) €R
wl(:) and wz(t) are uncorrelated zero mean white noise processes with

spectral density matrices 21 and 22 respectively. If an observer is used,

i R ki altani

B Y
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it is assumed to have the following dynamic equation

;.(t) = (A+B)z(t) +Cu(t) +F(y(t) ~Ez(t)) (2.25)
with

u(t) = Dz(t)

where z(t)ERn and F and D are matrices of appropriate dimensions. We may
use a state feedback control law of the form (2.4), an output feedback

control law of the form

u(t) = Dy(t)

(2.26)
= DE x(t)
Analogous to the study of deterministic systems, we will
consider the different possibilities of occurrence of a delay in the
system. If’a delay, u, is expected to occur in the plant, the state
equation will be of the form
x(t) = A x(t) + B x(t-w) +C u(t) +w(t) (2.27)

with =x(0) = X,

along with the control law (2.4), (2.25) or (2.26). If a delay, u, is
expected to occur in the feedback path, the state equation (2.23) will

remain unchanged along with one of the following control laws:

u(t) =Dx(t-u) (2.28)

or

u(t) = DE x(t-H) (2.29)
If an observer is used, we assume

y(t) = E x(t-#) +w, () (2.30)

along with equation (2.25). The case of a delay in the reconstructed state

is also considered for the purpose of completeness. But it is not common ‘
i, “
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as discussed in Section 2.1, So, we will also consider a control law of

the form
u(t) = Dz(t-H) (2.31)

associated with the observer dynamics given by equation (2,.25),.

The standard linear regulator problem is to minimize a quadratic
performance index of the form

1.1
3'= 7 lm T E{[ (x'Qx + u'Ru)dt] (2.32)
T o

where E{-} denotes the expected value and Q and R are matrices of
appropriate dimensions.

For our problem, low sensitivity can be achieved by incorporating
the sensitivity function defined in equation (2.13) in a performance index.

The augmented performance index to be minimized is of the form

=1 1
J 2 1lim T

E{fr(x'Qx + u'Ru + ¢' So )dt} (2.33)
T o x x
where S is a matrix of appropriate dimensions. As discussed in the above
section, we do not have to introduce cz(t), if an observer is used, in
the performance index J.

Now, we present a brief description of the optimization procedure,
which we will carry out to derive the necessary conditions of the performance
index (2.33) to be minimized.

1. Derive the dynamic equation of the closed loop sensitivity functions
ax(t) and cz(c), in case of using an observer, by calculating the
first partial derivative of the state equation (2.23) or (2.27) and

(2.25), if an observer is used, after applying the proper control law.

Then substitute with the nomial value of the delay, i.e.,zero, in all

Bwl(t) sz(t) )

of the equations. Note that ™ )

0.

it
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2. Form an augmented state vector
_ [ x(t)
x(t) = (2.34)
o (t)
or, if an observer is used,
x(t)
- z(t)
b | x(t) = (2.35)
f{g ax(t)
XY
F . __?z(tzd
¥
# S
‘;' Hence, form A, Q and w(t) such that the problem is reformulated as
‘~ 1
minimize J = 5 lim E{[ x Qxdt} (2.36)
T T—co o
with
x=ix +w (2.37)
34
- and define
T =Elww'} (2.38)
ﬁ It is shown [22] that equations (2.36) and (2.37) can be expressed
' as an equivalent static minimization problem:
1 —
minimize J = tr{Q P} (2.39)
such that P is the solution of the equation
AP +PA' +Z =0 (2.40)

It is also proved [22] that a necessary condition for J, given by (2.39)-

(2.40), to be minimal is

I R I B
0 ) aDtr{APK +3 2+-2-QP} (2.41)

where




13

s T

A'R +KA +Q =0 (2.42)
. (2.43)

If an observer is used, one more equation of the form (2.41) will be

used to get the optimal value of F. Similar to what we got in
the deterministic case, we have to use an iterative algorithm to compute
the optimal feedback gains. That is bec;use P and K, obtained by
solving (2.42) and (2.43), depend on D. Then they are used in (2.41)
to get D. The following algorithm will be used
1. Start with an initial guess for D.
2. Form A, 6 and E and hence solve equations (2.42)-(2.43) to get P and K.
3. Solve equation (2.41) to obtain a new value of D.
4. Compare the new D with the old onme. If it is close enough, stop.
1f it is not close enocugh, start a new iteration repeating steps

2 and 3 using the new value of D.

2.3. Existence of a Solufion

Let the necessary conditions be generally given by
f(D,8) =0 (2.44)

It is known [2] that for § = O, there exists D° such that £(p°,0) = O.
So, by the implicit function theorem, there exist open sets Uc:Rnxm+nxn
and WSR™™® with (DO,O) €U and 0 €W such that to every S €W corresponds a
unique D* such that (D*,S) €U and f(D*,S) = 0. 1In other words there
exists D* which satisfies (2.44) for any S in the neighborhood of O.

The algorithms presented in Sections 2.l and 2,2 are similar to
the gain approximation algorithm which corresponds to the successive aver

relaxation (SOR) algorithm for the Gauss-Seidel iteration. It is proved [22]

that the direction determined by that algorithm at the kth iteration is a
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downhill direction. Thus this algorithm is in fact a descent method. The
proofs for the cases considered in this thesis are similar to the proof

presented in [22]. Step number 2 of both algorithms is to solve

Lyapunov-type equations which can be done using the Riccatti package of

Linsys prepared by Bingulac [23]. Step number 3 of both algorithms is
to solve an equation of the form (2.21). Here we propose an algorithm to

solve that equatiom.

Consider the following iterative algorithm

i+l

j=1

with D° =P

To prove convergence of that algorithm we let p = Sgp{p(Uj), p(vj)};

j=1,..., N where pQUj) and pCVj) are the spectral radii of Uj and Vj,

respectively. The error in the ith iteration is defined as e, = Di - Di+1’

and its norm is found [7] to satisfy the following inequality

i+l

el s +Y - @® T (2.46)

2
where v and I" are positive constants. If we assume that Np~ < 1, the right

hand side will go to zero as i - ®. So, the algorithm (2.45) converges

under the sufficient condition

0 < = (2.47)

V]

2.4. Advantages of this Design Scheme

The problem considered in this thesis is an extension of the

standard Linear-Quadratic problem as described in sections 2.1 and 2.2.

Q, R and S, defined in equation (2.14), are design parameters to be adjusted

in order to get a desirable behavior. The matrix Q is responsible for the

N
= £ UpDV, + .
D Z Upu, +e (2.45)

[ U
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regulation of the states according to a desired weighting. The matrix R

is responsible for minimizing the control effort. The matrix S is
responsible for reducing trajectory sensitivity to a small time delay of
the system states according to a desired weighting. This design scheme is

reliable since it provides a guaranteed approach to reduce sensitivity

in general, The choice of S with a specific weighting is reflected
directly on the sensitivity of the different state trajectories. This

direct handle on sensitivity is the main advantage of this proposed design

scheme.




CHAPTER 3

DETERMINISTIC SYSTEMS WITH A TIME DELAY IN THE PLANT

3.1. State Feedback Control

Referring to the general problem formulation stated in Section
4 2.1, we have, in this case, a state equation (2.7) along with a state
K feedback control law (2.4) and a performance index (2.14).
N The equations to be solved are summarized as follows:
:;
¢ ALAt =0 ALA'R!
4 KyjA+A'K )y =-Q+Ky BA+A'B'Kyy 3.1
- K, ,A+A'K,, =A'B'K (3.2)
. 12 12 22 ‘
- , . -
| KA +A'Ky) =K, BA (3.3)
) A4 Al =® -
KypA+A'K,, = =S (3.4)
" RM+MA =L (3.5)
hg, +G ' =BAM (3.6)
A Al o AVm? At
AG2+G2A GlA B +BAG1 3.7
. (
RS P A - ' -
D=R C ,:(B KZl Kll)M+(B K22 K12)G1
4 1
S
- K.G! - \ !
Ky161 "Kpp6y f M (3.8)
where
A=A+B+CD (3.9)
Q=Q+D'RD (3.10)
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and
= x!
Z=Elx X'} (3.11)
The above equations are obtained directly by applying the optimiza-

tion procedure described in Section 2.1. Here we present the main steps of

the derivation. For u =0, we have [1]

X =AX (3.12)
& = A 0 - BAX (3.13)
and
1p®, =
=50 '@ +o'so)ae (3.1%)
[o]

where A and Q are defined above. The Hamiltonian is given by

=l 1A _]: ' [N t N o~ A'RA
H 2x Qx+2GSO+)\.xAx +cho )\CBAX (3.15)
. = - aH = -(6X+K'}\ '&'B'k ) (3 16)
oX b.4 (o] ¢
A= - Ba 5o+ Any) £ (3.17)
[+ oo (o *

Xx and xc are related to X and o by the equations (2.17a-b). Hence we

obtain the equations for and K22 stated above. To apply the

K110 K120 K5
necessary condition (2.20a) we evaluate the partial derivative of H with

respect to D,

ke i
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SH . ' ' X! 1 t _pint X1
% RDXX'+C Kllx +C KIZO‘X Cc'B KZIX

t ]
- C'B'Kzzcx'+ C'Kzlx g'+ C K22 oc (3.18)

Hence we obtain the above equation for D along with the equations of M,

Gl and GZ'

3.2. OQutput Feedback Control

‘Referring to the general problem formulation stated in Section

2.1, we have, in this case, a state equation (2.7) along with a control

law (2.5) and a performance index (2.14).

The equations to be solved are summarized as follows:

Knﬁ +&'%y, = -q + KIZBZ + &'B'Ky, (3.19)
Ky A + Ak, = A'B'K,, — (3.20)
1(213 + A%y = KZZBK (3.21)
KZZK + ARy, = =S 4 (3.22)
AM + MA' = -F (3.23)
A, + 6,&' = BAM (3.24)
4G, + G,A' (., G,A'B' + BAG] (3.25)
D = R Ict \; (B'Kyp =Ky DM+ (B'Kyy ~Ky5)G)

-K,;G} - \Kzsz E'(EME') L (3.26)




19
where
A = A+B+CDE | (3.27)
Q = Q+E'D'RDE (3.28)
and
Z = E{x x;} (3.29)
v~g The above equations are obtained directly by applying the optimi-

zation procedure described in Section 2.1. Here we present the main steps

f of the derivation. For p =0, we have

£ . ~
> X = AX (3.30)

r's N 3

M d = Ao~ BAX (3.31)

and i

. 1 *®

* J = 3 r (x'Qx + ¢'sag)dt (3.32)

. o

where A and 6 are defined above. The Hamiltonian is given by

1o Py 3 Ay - A
H=2X'Qx+20'Sc+ k;Ax+xéAc Ac',BAx (3.33)

We notice that H, as a ifunction of A and 5, has the same form as that at
Section 3.1. Hence the equations for Kll’ K12’ K21 and K22 are of the
same form as those of Section 3.1, The partial derivative of H with
respect to D is then evaluated and the necessary condition (2.20a) gives

the above equation along with the definitions of M, G, and G,




3.3. Use of Observ;rs

Referring to the general problem formulation stated in Section
2.1, we have, in this case, a state equation (2.7), an output equation
(2.2) and an observer (2.3) along with a control law (2.6) and & perfor-
mance index (2.14).

The equations to be solved are summarized as follows:

K A+K'R | =-Q -E'R'RKE -E'G'K,)) +&'B'Kyy +K) 384 - Ky ,GE (3.34)
Ky oF +4'K;, ~-E'K'RD -E'G'K,, +A4'B'K4, +Ky 3BCD - K, ;CD (3.35)
K13§+K'Kl3--E'c'x23+2{'3'1<33-KMGE (3.36)
Ky, F +K'K14=-E'G'x24+§'3'1<34-K13CD , (3.37)
K215.+F'K21 = -D'RKE - D'C'K,; +D'C'B'Kyy +K, 4BA - K, ,GE (3.38)
K,,F +F'K,, =-D'RD - D'C'Ky, +D'C'B'Ky, +K, ;BCD - K, CD (3.39)
x23K+F'K23--D'c'Kl3+D'c'B'K33-K24GE (3.40)
K24F+F'K24--D'C'K14+D'C'B'K34-K23CD (3.4D)
K31K+K'K31--£'G'K41+K33B§-KBZGE (3.42)
K4oF +Z'K32 = -E'G'Ky, +K34BCD - K4, CD (3.43)
K33S+Z.'1<33--s -E'G'K,; - K,,GE (3.44)
K4, F +X'K34--s'c'x44-1<33cn (3.45)
K41§+F'K41 = -D'C'K4; +K, 4BA K, ,CE (3.46)




21

K,,F+F'K,, =-D'C'K

42 42 32 7 743 41
K43A+F'K43 = -D'C'K33 - KMGE
CD

! L -
KMF+F K44 D'C'K34 K43

arlicirpip op op 1. -1
D=R "{C'[B P, - ) = P,] - RKEM), IM,,

= -1 ' [ - - - -1
k=R "{c'[B Pg-Pg-P,] RDMZI}E'(mllE')

where
A = A+B+CKE

P + K, M,, +K, M

1 = KpiMg +KyoMyg + Ky gy, Ky My

Py =KqiMyy + KoMy +KygMy) +Ky M0

Py = KyyMy, + KoMy, +RagMy, KMy

P, =Ky Myp + KoMy +KyaMay KMy

Pg =Kq My +Kaplyy +KaaMay +Kg M,

Pg =Kq My 3 + Koty 3+ KaqMyq +K5 M, 4

M1 My,
%1 My,
M =
M3 M3,
[ M4 M42

+K, ,BCD - K, ,CD

13

23

33

43

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)
(3.55)

(3.56)

(3.57)

(3.58)

(3.59)

a2k 2 bk




‘_ Lo

GE F 0 0
A= (3.61)
-BA -BCD A cD
0 0 GE F
e —
Z, 0 0 0
0 z 0 0
- Z
Z= (3.62)
0 0 0 0
0 0 0 0
L, = Elx, x[} (3.63)
z, = Elz 2!} (3.64)

Here we present the main steps of the derivation of the above

equations. For u=0, we have

% = AX + CDz (3.65)
%z = GEX + Fz (3.66)
& = -BAX - BCDz + Ko, + (DO, (3.67)
&z = GEg, + Fcz (3.68)

The Hamiltonian is given by

| i i B Wb mm e < okt o




H = %x'Qx +il-z'D'RDz+%x'E'K'mx+%X'E'K'RDz+Elz'D'RKEx
P iy ' ' ' ' ropAy o >
+ 39 Scrx+ AxAx + }‘x CDz + J\z GEX + kze+xcx[ BAX - BCDz +A 0, +CD :rz]
)
+ kc [GE crx-i- Fcz] (3.69)

Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along the proper definitions of K, A and X,
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CHAPTIER &

DETERMINISTIC SYSTEMS WITH A TIME DELAY IN THE FEEDBACK PATH

4.1, State Feedback Control

In this case, we have a state equation (2.1) along with a control

law (2.8) and a performance. index (2.14).

The equations to be solved are summarized as follows:
K11"+Z'Ku--6+ Kucm'{+§'n'c'1<21 (4.1) |
x12§+5'1<12 -K.'D'c'x22 (4.2)
Ry1A+&'Ky;) =K,,CDA (4.3)
KypR +A'K,, = =S | (4.4)
EM+MA' = -2 (4.5)
Zicl+clfi' = CDAM (4.6)
Kc2+c2K' =G,A'p'C’ + CDAG] (4.7)
D -R'lc'[(n'c'K21 =K) M+ (D'C'Ky, - Ky,5)6,
+ (KM +K,,G,)D'C" - K,,G1 -Kzzcz}vfl (4.8)
where
A=A+CD (4.9)
Q=Q+D'RD (4.10)
and
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- | I
Z-Eixo X2 3 (4.11)

The above equations are obtained directly by applying the
optimization procedure described in Section 2.1. Here we present the main

steps of the derivation. For p =0, we have

x=AX (4.12)
R $=Ko- CDAX (4.13)
N
. and
é 1
- J=3 /7 (x'Qx + o' so)de (4.14)
o
?: where A and Q are defined above. The Hamiltonian is given by
3 |
‘ l ¢~ .1 ~ ~ ~ ,
“ H=Ex'Qx+§-c'Sc+>\>'(AX+AC'TA0-)\C'ICDAX (.15)
Then, the equations summarized above follow from the optimization procedure
B described in Section 2.1 along with the proper definitions of M, Gl and GZ'
. 4.2. Qutput Feedback Control
Referring to Sectiom 2.1, we have, in this case, a state equation
(2.1) along with a control law (2.9) and a performance index (2.14).
b
The equations to be solved are summarized as follows:

A LAt
11A+A K

K 1=-6+KIZCDEK+K'E'D'C'K21 (4.16)

1




26

A LAl =AtlRIn'E!
K12A+A K12 A'E'D'C K22

~ ~' - -~
K, A +A'K,; =K,,CDEA

A4 Al % -
K22A+A K22 )

~ e ~
AGl +G1A CDEAM

AG, +G

Al a( AIRIntet At
2 2A GlA E'D'C’ + CDEAG

1
r

.'11 nip! - inted -
D=R C \(EDCK Kll)M+(EDCK22 KlZ)Gl

21

+ (K, M+K,,G )E'D'C! =K,;6] -1;22@2} E'(EME')-]'

where

A=A +CDE

Q=Q+E'D'RDE (4.25)
and

Z-Elxo x;} (4.26)

The above equations are obtained directly by applying the optimi-
zation procedure described in Section 2.,1. Here we present the main steps

of the derivation., For p =0, we have
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J = -2]: I (x'5x+c'30)dt (4.29)
[}

where A and 6 are defined above., The Hamiltonian is given by
,_]:_ A 1l 15 e o\ :
H=35x'Qx+350'50+ xxAx+cha AGCDEAx (4.30)
Then, the equations summarized above follow from the optimization procedure

described in Section 2.1 along with the proper definitions of M, G1 and GZ‘

4.3, Use of Observers with the Delay in the Reconstructed State

Referring to Section 2.1, we have, in this case, a state equation

(2.1), an output equation (2.2) and an observer (2.3) along with a control
law (2.10) and a performance index (2.14). |

The equations to be solved are summarized as follows:

Ku‘:*;‘"‘n = -Q ~E'K'RKE ~E'G'Kyy +E'G'D'C'Kyy +K; 4CDGE - Ky ,GE (4.31)
Ky F +4'K;, = -E'K'RD -E'G'K,, +E'G'I?'C'K32+K13CDF - K,,CD (4.32)
K13.Z+&'1<13--E'G'K23+E'G'D'c'1<33 - Ky 4GE (4.33)
Ky, F +A'K;, = "E'G'K,, +E'G'D'C'Ry, - K 40D (4.34)
K,qA +F'Kyy = -D'RKE = D'C'Ky; +F'D'C'Kyy +K, ,CDGE - K, ,GE (4.35)
K,oF +F'Ky, = -D'RD = D'C'Ky, +F'D'C'Ky, +K, 4CDF - KZ?CD (4.36)
KysA +F'Ky3 = -D'C'KRy 4 +F'D'C'Kyy =Ky, CF | (4.37)
Ky F +F'Ky, = -D'C'Ky, +F'D'C'Ky, = Ky,CD (4.38)
1<31K+§'1<31 = -E'G'K,, = K3,GE +K;,CDGE (4.39)

e R e e ey
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RyoF +A'Ry, = “E'G'K,, +K,4CDF - K41 CD (4.40)
KyjA +A'Ky; = =S -E'G'K,; =K, CE (4.41)
K34F+§'K34=-E'G’K44-K33CD (4.42)
- K415+F'K41 = -D'C 'Ky +K,; 4CDCE - K, ,GE (4.43)
;‘ K, F +F'K,, = =D'C'K,, +K, 4CDF - K, ,CD (4.44)
: .
Fﬁ '<43§+F'K43=-D'C'K33 - K, GE . (4'-45) ’
5, K,y F+F'Ky, = =D'C'Kyy =K 50D (4.46)
-
f D;R'l {C'[PZE‘G' +PyF! 'Pl'P4] -RKEMIZ} M£21 (4-4'7)\
5 )
k=Rt <'[RDM21+C'(P5+P6)]E'} (EMHE')-I (4.48)
‘ where
- K=A+CKE (4.49)
: Py =Ry My +RypMyy +Ry Mgy + Ry My - (430
r Py mKypMy1 +KyoMpy +KagMgy + Ry My (4.51)
Py =Ky Myp +K3aMyp +FaaMay +KyuM,0 (4.52)
P, =Ry My + KoMy, + Ry +Ky M, (4.33)
Py =KyyMyy + KoMy + Ky May + Ky M) (4.36)
Pg = KypMy g+ KypMy3 + Kyt + Ky M, 5 (4.55)
AM+MA' + L =0 (4..56)




P Y N
R PAKY
’ -

"y

i,j=1,2,3,4 are the partitions of the matrix M as in equation

M50
(3.59) and Y is defined by equations (3.62)-(3.64).

Here we present the main steps of the derivation of the above

equations. For p=0, we have

% =Ax +CDz (4.58)
2=GEx+Fz (4.59)
= a - A » 4.
& = “CDGEx - CDFz +Ag, +CDg, (4.60)

& =GEg +Fo (4.61)
z X 2

The Hamiltonian is given by

I P L g 1 i 1 i 1,
H 2x Qx+22DRDz+2xEKRKEx+2xEKRDz+§zDRKEx+§chcx

1A t ' (- - A !
+ kx(Ax+ CDz) +Xz(GEx +Fz) +>scx( CDGEx - CDFz +on+CDO'z) +}\cz (GEcrx+Fcz)
(5.80)
Then, the equations summarized above follow from the optimization procedure

described in Section 2,1 along with the proper definitions of K, Aand T,

Y
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L.4, Use of Observers with the Delay in the System Output

Referring to Section 2.1, we have, in this case, a state equation
(2.1), an output equation (2.2) and an observer (2.3) along with a control

law (2.11) and a performance index (2.14).

The equations to be solved are summarized as follows:

Ky A+4'K); =-Q - E'K'RKE ;E‘G'KZI +A'E'R'C'Kyy +A'E'G'K +K, ,GEA
: + K JCKEA (4.62)
‘ Ky ,F +A'k;, =-E'K'RD -E'G'Ky, +A'E'K'C'Ky, +A'E'G'K,, +K; ,CECD
+ Ky 4CKECD - K ,CD (4.63)
3 K13§+K'K13--E'G'K23+;’E'K’C'K33+Z'E'G'K43-K1462 (4.64)
Ky F +A'Ky, = -E'G'K,, +A'E'K'C'Kq, +A'E'G'K,, - K;4CD (4.65)

ALF! =D’ -nle? tetip i it taigr1at N
K21A+F K21 D'RKE DCK11+DCEKCK31+DCEGK41+K24GEA

+ K, ,CKEA - K, ,GE (4.66)

' ! = -N'RO - D! teipiptet tatptat
K22F+F K22 D'RD DCK12+DCEKCK32+DCEGK42+K24GECD

+ K, 4CKECD = K, CD (4.67)
Kyqh+F'Kyy = ~D'C'Ky 4 +D'C'E'R'C'Ky3 +D'C'E'G'Ky 5 = K, GE (4.68)
Ky,F+F'Ky, = -D'C'Ry, +D'C'E'K'C'Ry, +D'C'E'G'Ky, = K)3CD (4.69)
Ky A +A'Ry; = -E'G'Kyy +K, 4GEA + K 1CKEA - K, CE | (4.70)
Ky F +A'Ky, = -E'G 'Ky, +KqGECD + K, 3CKECD - Ky, CD (4.71)
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N =T ROt - 4,72
KysA +A'Ky3 = -S -E'G'K 5 - K4, GE ( )
A = plat -
Ky F+A'Ry, = ~E'G'Ky = Ry4CD (4.73)
Y ' = Ne g e
K, A +F'K,q = -D"C'Ryy +K, ,GEA +K, ,CKEA - K, ,CE (4.74)
] = _- 1 - .
Ry F+F'Ky D'C'Ky, +K,,GECD +K, ;CKECD ~ K, CD (4.75) .
A R -~ U -
K ,jA+F'K 3 =-D'C'R3, - K, ,GE (4.76)
B - ! -
‘ K F +F'K,, = -D'C'Ky, =K, 4CD (4.77)
- -1 trpipiet 1At - - - -1
D=R {c [E'R'C'P, +E'G'P, - P; - P,] RKEMIZB M, (4.78)
J
4
= ol PR ' ot 1 ' - - - \
R=R" ¢ C [PEE'R'C' +E'K'C'P, +P,D'C' +E'G'Pg - Pg = P,] Romu/
\
-1
E'(EM,E') - (4.79)
where
A = A+CKE (4.80) j
Py =Ky Mo +KyoMyy +Ky gMay +Ky My (4.81)
Py =K My, +KypMyy +KagMyy +KquMy (4.82)
Py = Kq M4+ Kyt + KMy, +Ry My (4.83)
By =KuaMyp +KyoMyp H Ky Mgy +M, M (4.84) '
Pg =Ky My +KyaMyy + K gMay +K My (4.85)
Pg =Ky M) +KypMyy +KagMayy +Kq M,y (4.86)

Py = Kq My 3 +KapMy 3+ Ryqty3 +Ry M, 4 (4.87)
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Pg = KMy +KyoMo1 Ky qtay TRy My (4.88)
AM+MA'+Z = 0 (4.89)
i I
I | |
- GE | F | 0 0
A= 3 Lo (4.90)
-CKEA | ~CKECD | A | €D
- ]
| -Gea | -GECD | GE | F__
Mij’ i,j=1,2,3,4 are partitions of M as in equation (3.59) and

T is defined by (3.62) - (3.64).
Here we present the main steps of the derivation of the above

equations. For k=0, we have

% = Ax + Dz (4.91)
2 = GEx+Fz (4.92) |
3
:
- ~ i
&, = ~CKEAX - CKECDz + 40, +CDJ, (4.93) !
|
&, = -GEAx - GECDz + GEG_+F0, (4.94) |
The Hamiltonian is given by A\
H -1 x' Qx+—1 z'D'RDz + lx'l-:'l('RKli‘.x+ -]-'x'E'K'RDz+ 1 z'D'RKEx + lcr' So
2 2 2 2 2 2 'x"x
+ k;‘(ﬂx+CDz) +M1(GEX +F2z) + A} (-CKEAX - CKECDz +A0_+CDo,)
x
' - N -
+ kcz( GEAX - GECDz + GEO, +F0,) (4.95)
Then, the equations summarized above follow from the optimization procedure
described in Section 2.1 along with the proper definitions of K, Aand T,
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CHAPTER 5

STOCHASTIC SYSTEMS WITH A TIME DEIAY IN THE PLANT

5.1. State Feedback Control

Referring to section 2.2, we have, in this case, a state equation

(2.27) along with a control law (2.4) and a performance index (2.33).

The equations to be solved are summarized as follows:

TP s 7 (2 e

A'R +KA +Q=0 (5.1)
AP +PA'+E =0 (5.2)
P11 P12 I‘Kn K2 1
P = s (5.3) K= | (5.4) -
)1 P2 | % K9
(XP)qy (XP),,
KP = (5.5)
(KP)yy (KB),, |
1,y -1 :
D=R {C'[B (KP)y, - (KP)11 - (KP)ZZ]} 3 (5.6)
where
A=A+B+CD (5.7)
Q=Q +D'RD (5.8)
= E{wlwi} (5.9)




(5.10)
q = (5.11)
0 S
_ z -53'
= (5.12)
- -BZ BZB'
.
' The abcve equations are obtained directly by applying the
v optimization procedure described in section 2.2. Here we present the main
steps of the derivation. For w=0, we have
<
F % = Bx +w; (5.13)
14 .
< &=T\‘c-BA‘x-Bw1 - (5.14)
Define
- B x] B Wy
r x = J (5.15) , W= (5.16)
E g -Bwl

Hence, we have an equivalent static minimization problem described by
equations (2.39)-(2.40) with K, 6 and T as defined above. The necessary
conditions follow directly from equations (2.41)-(2.43) making use of

the fact that a trace of a block matrix is equal to the sum of traces

of the diagonal blocks.

R

g e

AT P ENE L 2y KO S s
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5.2. Output Feedback Control

Referring to section 2.2, we have, in this case, a state

equation (2.27) and an output equation (2.24) along with a control law

(2.26) and a performance index (2.33).

The equations to be solved are summarized as follows:

A'RK+KA +Q =0

AP+ PA' +T =0

-1 S
D=R [Ll _l (EPnE )

= ! ' - - '
L, =c¢ {B (KP),; = (RP),, (KP)ZZ}E
where
A=A +3B +CDE
9 =Q +E'D'RDE
= t
z, E{wlwl}
_ X 0 q 0
A= ~ ~ ] (5.24) Q=
-BA A 0 S
- 1
_ L ZB
S: =
- 1
BT, BT, B

Pij’ Kij and (KP)ij; i,j = 1,2 are partitions of P, K and (KP) as in
equation (5.3) - (5.5).
The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

(5.17)
(5.18)

(5.19)

(5.20)

(5.21)
(5.22)

(5.23)

(5.25)

(5.26)

T SR DU RE SR P A
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main steps of the derivation. For w = 0, we have

% = Ax + v, (5.27)
o =3% - B&x - Bw, (5.28)
Define
- x _ Wy
x = (5.29) ’ w = (5.30)
o -Bw1

Hence, we have an equivalent static minimization problem described by
equations (2.39)-(2.40) with K, 6 and L as defined above. The necessary

conditions follow directly from equatioms (2.41)-(2.43).

5.3. Use of Observers

Referring to section 2.2, we have, in this case, a state
equation (2.27), an output equation (2.24) and an observer (2.25) along
with a performance index (2.33).
The equations to be solved are summarized as follows
A'K+KA+Q=0 (5.31)

AP +PA' +Z =0 (5.32)

r —

Pin P2 Pz Py
Py By Py By

P = (5.33)
P P p P

31 732 33 34

P P P P

|41 42 43 44 ]
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K1 1 K12 K13 K14
K1 K Ky K,
K=
K31 Ky X33 R
1 K2 K3 Ky
o -
®p);; (KB,  (RBY,3 (KDY,
(RP)y;  (RB),,  (RP),,  (KP),,
KP =
(KP)31 (KP)32 (KP)33 (Kp)34
(KP), ; (KB, 5 (XP), 4 (KP)44_J

D = R7MC! (B (KP) 5, - (KB}, - (RB), = (KB, - (kBY,, 115 )

F = K;;{[(KP)ZZ + (KP)44 -(KP)Z1 - (KP)43]E'}Z£1
where

A=A+B +CD-FE

= 1}
I E{wlwl,
xx 1]
Z, E{wzw }
. -
A+B CD 0 0
A=
-B(A+B) -BCD A+B cD
0 0 FE A {

""‘“”‘“‘“““*‘““‘“""""";"""-lllIl-lllliiillllllIlh------iiiiiiiilllllllllllll‘l‘

(5.34)

(5.35)

(5.36)
(5.37)

(5.38)
(5.39)

(5.40)

(5.41)



(5.42)
3 0 0 0 0
3 r —'l' ¢
A
- - t
[ Z, 0 213 0
0 FZZF' 0 0
. = (5.43)
- 1
le 0 BElB 0
v 0 0 0 ‘ 0
5 The above equations are obtained directly by applying the
1#- optimization procedure described in section 2.2. Here we present the main
> i
& steps of the derivation. For u = 0, we have |
% = (A+B)x+CDz+w, (5.44) 'i
z = FEX + Kz+1=w2 (5.45) |
1
> = - - |
Ty B(A+B)x - BCDz + (‘AL+B}cx-n-cx>o-z - Bw, (5.46) §
i . cz d FEO’x+AO'z (5.47)

Define




w = (5.49)

Hence we have an equivalent static wminimization problem described by
equations (2.39)-(2.40) with Z, 6 and E as defined above. The necessary
conditions follow directly from equations (2.41)-(2.43) with one more

equation , similar to equation (2.41), for optimization of F.
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CHAPTER 6

STOCHASTIC SYSTEMS WITH A TIME DELAY IN THE FEEDBACK PATH

6.1. State Feedback Control

Referring to section 2.2, we have, in this case, a state
equation (2.23) along with a control law (2.28) and a performance
index (2.33).

The equations to be solved are summarized as follows:

A'K +KA +Q =0

AP+ PA' +% =0

-1 -1
D=R (L1+L2)P11

L1 C'[(KP)ZlA' + Klel -(KP)ll"(KP)zz]

' 1A 1pt -
L C [(KP)ZID C'+ D'C (KP)ZZ K CDZIJ

22

where

!
]
>
+
S

o
"
o
+
S,
B8

(6.1)

(6.2)

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

e TP

—
i
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CDZID c

and (KP)ij; i,j=1,2 are partitions of P, K and (KP) as in

P.., K.
13- 13
equations (5.3)-(5.5).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

main steps of the derivation. For i = 0, we have
« = Ax + w1

y = Ao - CDAx - CDw,

Hence, we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with A, 6 and T as defined above. The necessary

conditions follow directly from equatioms (2.41)-(2.43).




6.2. Oﬁtgut Feedback Control

Referring to section 2.2, we have, in this case, a state equation
(2.23) and an output equation (2.24) along with a control law (2.29) and a

performance index (2.33).

The equations to be solved are summarized as follows:

A'R +KA +Q =0 (6.16)
AP +PA' +5 =0 (6.17)
D= R’l(L +L.)(EP, .E') L (6.18)
1 HL) (EPpy
L - cf [(KP)ZIA' + K'ZIZI - (z<1’)11 - (Kl’)zz]E' (6.19)
Ly = C'LLOR),ED'C! +E'D'C! (KR, - K, CDRE, (6.20)
where
A = A + CDE (6.21)
Q=Q+E'D'RDE (6.22)
£, = Elww (6.23)
T x 0
A= (6.24)
-CDEA’ A
q 0
Q = (6.25)
0 s

VPP SRR




»

I A

R A

1 -Z,E'D'C’

L= (6.26) {

'CDEZ1 . CDEZIE'D'C'

L

Pij’ Kij and (Kp)ij; i,j=1,2 are partitions of P, K and (KP) as in

equations (5.3)-(5.5).
The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the main

steps of the derivation. For u = 0, we have

;‘ = R‘x -+ wl (6.27)
o = Xo - CDEAx - CDE w (6.28)
Define
- l'x
x = s (6.29)
Lo

Y1

v = . (6.30)
-CDEw

1

Hence, we have an equivalent static minimization problem described by
equations (2.39)-(2.40) with K, 6 and E as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43).

i
E
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6.3. Use of an Observer with a Delay in the Reconstructed State

Referring to sectiom 2.2, we have, here, a state equation (2.23),
an output equation (2.24) and an observer (2.25)along with a control law
~(2.31) and a performance index (2.33).

The equations to be solved are summarized as follows:
ot

A'K+KA +Q =0 (6.31)
AP +PA' +2 =0 (6.32)
D--R'lc'[L +L ]p'l 6.33
1+t 51%), (6.33)
Fa-Koi[L,+L,15 " 6.34
Kyplly+ L, 15, (6.34)

L, = (KP)y, + (KB),, + (KP) 5, + (KP),, - {(KP) 5, + (KP),,JA'
-((KP) 3 - (RP) 55 + (KP) 1 = (KP),JE'F" = {Kyy +K,, JFLF'  (6.35)
L, = {-(KP),, - (KP),,}D'C' ~D'C' {(KP),, + (KP),,}

+ {Ry3+K3, +K; g3 +K, JCDFLF! (6.36)

Ly = [(RR)y = (KPYpp + (KP) 43 = (KP)y,

+ D'C'{-(RP) 5, + (KP) 4, - (KP),; + (KP),,}]E" (6.37)
L, = [-[K23+K24}CD -D'C' ({Ky, +Ky,] A
-{Kq5 +K, 3 +Ky, +K,, }CD)]FE, (6.38)

where




v
(3

~y o

A=A +CD_FE

2 = E{w w'1

1 1
= 1
22 E{WQWZ'
A
FE
I-=|
!
} -CDFE
~ -CDFE
Q
0
Q = 0
{
!
| 0
.
- 0
no=
0
0
Pij’ Kij and (KP)ij;

equations (5.33) - (5.35).
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(] Q

~-CDA A

-CDA FE

D'RD

FZZF'

- '
CDFZZF

-CDFZZF'

9 |

0
CD

K_

o o

0 0

S 0

0 0|

0

-FL,F'n'c’
CDFZ,F'D'C'
CDFL,F'D'C’

- tntet
FZZF D'C

CDFZZF'D'C'

CDFZZF'D'C'

—

i,j=1,2,3,4 are partitions of P, K and (KP) as in

(6.39)
(6.40)
(6.41)

(6.42)

(6.43)

(6.44)

SIS,
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The above equations are obtained directly by applying the
optimization procedure described in section 2.2. Here we present the

main steps of the derivation. For W = 0, we have

Ax + CDz + w1

FEx + Az + Fu,

- CDFEx - CDAz + A0 + CDO_ - CDFw
b4 z 2

FEG + Ac - CDFEx - CDAz - CDFw
X zZ 2

-CDFw2

L_-_CDI"W2

Hence we have an equivalent static minimization problem described by

equations (2.39)-(2.40) with X, 6 and E as defined above. The necessary

conditions follow directly from equations (2.41)-(2.43) with one more

equation , similar to equation (2.41), for optimization of F.




W
i

6.4. Use of an Observer with a Delay in the System Output

Referring to section 2.2, we have, in this case, a state

equation (2.23), an output equation (2.30) and an observer (2.25) along

with a performance index (2.33).

The equations to be solved are summarized as follows:

A'K + KA +Q

]
Q

(6.51)
AP+ PA' +L =0 (6.52)
b= R-lllp-; (6.53)
F o= K, (L, +L) It

K2l tLs) 2, (6.54)

L, = C'[E'F' (KP),, - (KP)y, - (KP) 4, = (RP),, - (P, ] (6.55)

L, = [(KP)22 + (KP)44 - (K?)21 - (KP), 4+ (xP)MA‘ + (KP)MD‘C‘

< (6.56)
+ Kla-lbl]E'
- ' (6.57)

Lg K, FEL,E

where

(6.58)
A=A +CD-FE

(6.59)
£, = Elwpwy]

(6. 60)

— [}

22 = E{wzwz.

. —
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!— A CD 0] 0
_ i 0 0
A= N (6.61)
L0 0 A cD
! FEA -FECD FE A
—
, Q 0 0 oﬂ
_ ! 0 D'RD O O
* Q= ; (6.62)
j 0 0 S 0
g f
- ! 0 0 o o
76 — -
- ot
- g, 0 0 Z,E'F
%
:(
L
0 FE,F 0 0 ‘
- ;
. T = 0 0 0 0 ,‘_
E
-FEZ 0 0 FELZ,E'F' |
1. 1 i
i
(6.63)
P, , K

15 13 and (KP)ij; 1,§=1,2,3,4 are partitions of P, K and KP as in

equations (5.33) - (5.35).

The above equations are obtained directly by applying the

optimization procedure described in section 2.2. Here we present the

main steps of the derivation. Four ¥ = 0, we have




X = AX + CDz +w (6.64)

1

z =FEX + Az + Fw, (6.65)
S -Ac‘x + CDc,rz (6.66) ‘:
g, = - FEAx - FECDz + FEo, + &g, - FEW, (6.67) :
i
i
Define |
x|
~
- \ z ]
. x = | , (6.68)
i o
) ' %
. g
Pz
H r
: . —_
"1
- Fw,
w = (6.69)
_ 0
-FEwl j

Hence we have an equivalent static minimization problem described by
equations (2.39)-(2.40) with K, 6 and X as defined above. The necessary
conditions follow directly from equations (2.41)-(2.43) with one more

equation , similar to equation (2.41), for optimization of F. ;
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CHAPTER 7

EXAMPLES

In this chapter we apply our low-sensitivity design scheme to two

practical examples and compare the results to those of the standard IQG

design.

7.1. Continuous Stirred-Tank Reactor

Consider the continuous stirred-tank reactor [25] illustrated in
Figure 7.1. The problem is to control the outlet temperature, T, and the
outlet concentration, CA’ at some desired set points, T and EA’ in such a
way as to minimize a specified cost function, The manipulated variables are
the feed rate, w, and the heat added or removed, Q. In practice not Q but
the flow rate through a jacket or cooling coils would be manipulated. This
is related to Q through an unsteady state energy balance., For this problem
however it is simpler to assume Q is directly manipulated and that enough
heat transfer is available so that saturation does not occur, If R is
chosen relatively large this will assure that too great a control effort will
not occur. The system is driven by the initial condition given for temperature
and concentration., This is the standard state regulator problem and physically J
may be interpreted as a "start-up" problem., A second order reversible reaction
is assumed. The rate of reaction is expressed by

dc
A 2
Rate = —= =-kC, (7.1)

The rate constant, k, may be expressed as a function of temperature using

the Arrhenius expression

—
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s s 5 S D
= [RPP S NEO TSP W Rike

k =k, exp(- %} (7.2) ; i

RS TE

Substitution of (7.2) into (7.1l) yields

= a1.2
Rate = ko exp{- T}CA (7.3)

Note from (7.3) that the rate of reaction is nonlinear with respect to
temperature, T, and concentration in tank, CA‘ The degree of nonlinearity

with respect to T depends on the size of a, which is a function of the

L\ particular reaction. Unsteady state material and energy balances on the
; reactor yield
: dc
W 2 A
., vp(Cag ~Cy) ~kCy = 3¢ (7.4)
g 2
= 4HkC
3 Yot - Q_ A _dT
. VP(Tf + vpCp pCp dc (7.3)

Linerarization of equations (7.4) and (7.5) about steady state

or set-point conditions yields

~ - -_—— A —_— —2 — -—
E_é L EL i 2CAk CA i kaCA %_F CAF -CA ; 7.6
dt vp T2 vp *
’ ~ ~ -— 2 - -
EE ) -2 AHkCA CA ) z_ . AHkCAa ., 3 . Tf -T - 3.7
dtc C v =2 vpC v *
p p P T Y P p 4

C, and T, Q, w are defined as variations about the steady state values,
and ?, 6, w. w and k are obtained from the steady state versions of

(7.4) and (7.5). Defining T and E as our state variables and Q and w

A

as manipulated variables we may write
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™ 7] e A_—Z — 1] ™~
T s adHk G /-ZAHkCAj T
vP -2 \
C T c
4 - *“p *“p 1
at
w -2k C -
v Al G
ve -
T -T Q
vee
(7.8)
Cap ~Ca | Y2
0
vp

The following

reactor parameters were chosen:

Reactor volume = 13,38 ft3

Density = 55 lb/ft3

Heat capacity = 1.0 Btu/lb O
Heat of reaction = -12,000 Btu
14,000 °R

Reaction rate constant = 8.33x108ft3/1b mole min

o
Reactor feed temperature = 100 F
Reactor feed concentration = 0.4 1b moles/ft3

Reactor temperature = 200 °F

Reactor concentration = 0.21b moles/ft3

Solution for the equilibrium points in (7.4) and (7.5) yields steady state

flow rate, rate constante and heat duty as

k

w

Q

= 0,51 ft3/lb mole min
= 75,2 1lb/min

= 4238, Btu/min
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Using the above parameters our system equation (7.8) becomes

.| o0.0a1 4.6 [0.000  -0.136
X = X + u (7.9)
-0.001 -0,307 0 0.001
For the state regulator design of this reactor, we should expect
an undesirable time delay in measuring the system states, i.,e, temperature
and concentration. Such a delay might be significant enough to affect the
system behavior causing deviation of the trajectories from the nominal ones,
corresponding to zero delays. To reduce that effect, our proposed low-
sensitivity design scheme is applied. Consider the case discussed in section

4.1 using the following design parameters

0.01 0
R = (7.10)
0 1|
1 10
Q = (7.11)
| 10 400
s=0 (7.12)

This case corresponds to the standard state regulator problem. The

feedback gain matrix is computed to be
-0.996 -103
D = (7.13)
0.76 75.7
Trajectories of this case are plotted for several values of delays as well

as for the nominal zero delay, Trajectories and controls are illustrated in

Figures 7.2-7.5. It is seen that xZ(t) shows unacceptable sensitivity. So,

—__I»:.

SN L e a o e s e

0 S RN L a3

|
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we choose S so as to penalize that sensitivity., Now, consider the same

values of R and Q given by equations (7.10) - (7.11) along with the

-
1 0

s = (7.14)
0 100

The feedback gain matrix in this case is

following values of S

-0.997 -105.1
D = (7.15)
0.532 -53.21

The trajectories xl(t) and xz(t) of this case are illustrated in Figures

7.6 and 7.7 respectively. The controls ul(t) and uz(t) are illustrated in
Figures 7.8 and 7.9 respectively. It is seen that trajectories iA this case
become closer to each other than they are for the case when S =0 (Figures
7.2 and 7.3). This means that sensitivity to small undesirable delays is
reduced, However, we notice that the trajectories have large overshoots.

To improve this undesirable transient phenomena, we try other values of the

e e T

designmatrices Q, R and S. A good choice of Q, R and S will result in low

sensitive trajectories having desirable transient phenomena,

For another set of trajectories, consider the following

_
0.1 0
R = (7.16)
L 0 1
50 10 |
qQ = (7.17)
| 10 400
I 0

S =
0 10
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The feedback gain matrix in this case is

-0.996 -99
D = (7.19)

0.76 50

Trajectories xl(t) and xz(t) of this case are illustrated in Figures 7.10

and 7.1l respectively.

Now consider R and Q given by equations (7.16) and (7.l7) along with ]

the following value of §

500 0
S = (7.20)
0 500

The feedback gain matrix in this case is

o adm A e e o A by

-0.994 -107
D = (7.21)
0.48 -49.1

Trajectories and controls of this case are illustrated in Figures 7.12-7.15.
From the above discussion and associated plots we conclude that

our design scheme is reliable in reducing trajectory sensitivity. This is

because the matrix S has a direct handle on the trajectory sensitivity with

any desired weighting. To get acceptable trajectories, several values of Q,

R and 5 have been tried. It is seen that the choice of Q, R and S given by
equations (7.17), (7.16) and (7.20) respectively has resulted in a satisfactorily
low sensitivity. However, the transient response is not satisfactory. The
choice given by equations (7.10), (7.11) and (7.14) showed satisfactory
sensitivity as well as satisfactory transient phenomena. So, that would be

the recommended choice for this design.




Figure 7.1. Continuous Stirred-Tank Reactor
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Figure 7.2. xl(t) for R,Q and S given by equations (7.10), (7.1l)
and (7.12)
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Figure 7.3. xz(t) for R,Q and S given by equations (7.10), (7.1l1)
and (7.12)
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u=0.5

n=0

Figure 7.4,

18 28 38 48

ul(t) for R,Q and S given by equations (7.10), (7.11)
and (7.12)
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p=1 p=2

188

e

Figure 7.5.

L B B
18 29 38 48 59

uz(t) for R,Q and S given by equations (7.10), (7.11)
and (7.12)
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w=0.5 ///
128 l
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Figure 7.6. xl(t) for R,Q and S given by equations (7.10), (7.1ll)

and (7.14)
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Figure 7.7. xz(t) for R,Q and S given by equations (7.10), (7.11)

18

and (7.14)
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Figure 7.8. ul(t) for R,Q and S given by equations (7.10), (7.11)
and (7.14) ?
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Figure 7.9. uz(t) for R,Q and S given by equations (7.10), (7.1l1l)

and (7.14)
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Figure 7.10.

xl(t) for R,Q and S given by equations (7.16), (7.17)
and (7.18)
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Figure 7.11. xz(t) for R,Q and S given by equations (7.16), (7.17)
and (7.18)
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Figure 7.12, xl(t) for R,Q and S given by equations (7.16), (7.17)
and (7.20)
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Figure 7.13.

xz(t) for R,Q and S given by equations (7.16), (7.17)
and (7.20)
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Figure 7.15. uz(t) for R,Q and S given by equations (7.16), (7.17)

and (7.20)
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7.2. F100 Turbofan Engine

Consider the Pratt & Whitney F100-PW-100 afterburning turbofan,
a low-bypass- ratio, twin-spool, axial-flow engine. An extensive set of
linear state descriptions of this engine were given by Miller and Hackney [26].
The engine is described by a sixteenth order state model at 20 operating
points. That model is for zero altitude and for a power level angle (PLA) of
67 degrees which is near maximum non-afterburning power. Such an operating
point is chosen because every engine has to pass through this condition as,

for example, ~n takeoff. The engine state variables are defined as follows
X, = Fan Speed, SNFAN (Nl) - rpm

X, = Compressor Speed, SNCOM (NZ) - rpm

X = Compressor Discharge Pressure, Pt3 - psia

3
X, = Interturbine Volume Pressure, Pt4.5 - psia
x5 = Augmentor Pressure, Pt7m<-psia

Xy = Fan Inside Diameter Discharge Temperature, T , 5 - °R
= _O

X7 Duct Temperature, Tt2.5c R

Xg = Compressor Discharge Temperature, Tes - °R

- ©
X9 = Burner Exit Fast Response Temperature, Tt4hi R

XlO = Burner Exit Slow Response Temperature, Tt4lo - °R

Xy = Burmer Exlt Total Temperature, Tt4'-°R

x12 = Fan Turbine Inlet Fast Response Temperature, Tt4.5hi - °R
x13 = Fan Turbine Inlet Slow Response Temperature, Tt4.510 -°R

-]
X14 = Fan Turbine Exit Temperature, Tt5 R

= Duct Exit Temperature, T - °R

téc

-9
X16 = Duct Exit Temperature, Tt7m R

A e e i s ek s
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The inputs are defined as follows

U, = Main Burner Fuel Flow, WFMB - lb/hr

2
U2 = Nozzle et Area, Aj - ft

[ =]
H

Inlet Guide Vane Position, CIVV - deg

High Variable Stator Position, RCVV -deg

Ug = Customer Compressor Bleed Flow, BLC - %

The outputs are defined as follows

Y1 = Engine Net Thrust Level, FN - 1b

Y2 = Total Engine Airflow, WFAN - lb/sec
Yy = Turbine Inlet Temperature, T , - °R
Y4 = Fan Stall Margin, SMAF

Y5 = Compressor Stall Margin, SMHC

The sixteen eigenvalues of the engine were determined to be approximately:
-577, -175, -58, -51, -48, -39, -21.4+30.9, -18.6, -17.8+ j4.2, -5.8+i5,
-3.8, -2, -.68,

A reduced order plant was obtained [26] by eliminating all eigen-
values beyond the frequency range of interest, namely all real parts less
than -17,.8, This gave a fifth order model, However since the fan turbine
inlet temperature (FTIT) is a sensed variable, the fast response eigenvalue
of FTIT (-51) was also included. A sixth order reduced engine model was

established with eigenvalues and state variable correspondence as follows

-.68 -T410’ Burner Exit Slow Response (x6)
-2.0 -T4.51°, Fan Turbine Inlet Slow Response (xs)
-4.06 Ny Compressor Speed (x2)

L_J
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~5.4+4.71 Ny, Fan Speed (xl)
=5.4-4.71 P4, Augmentor Pressure (x3)

-51 Fan Turbine Inlet Fast Response (xa)

T4.5n1”
All of the sensed variables, except compressor discharge pressure, appear
in the reduced model. Four inputs and four outputs are considered in that

model. The inputs are defined as follows

= WF, Fuel Flow, PFH
AJ, exhaust nozzle area, FT2
CIVV, inlet vane position, DEG

RCVV, compressor vane position, DEG
The outputs are defined as follows

= N1, fan speed, RPM
= N2, compressor speed, RPM
= P7, augmentor pressure, PSI

FTIT, fan turbine inlet temperature, °F.

The parameter matrices A, C and E are given [27] as follows

-4.064 3.895 -470.5 7.971 5.29 -3.06;7
.03718 -2.958 -59.13 1727 2.08 12.48
.03389 . 0067 -4.442 .0059 L1474 . 0985
1.164 -2.646 -331.6 -50.05 -.473 -11.36
.05174 -.1176 -14.74 -2.001 -2.021 -.505

. 00184 . 0036 -. 601 .00008 .0009 -.666 |
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P —
.8686 -14.51 -96.14 9.246
.9096 -58.46 -1,053 -60,15
~.00799% -79.66 1.2 .3673
C= (7.23)
5.643 -112.2 -18.23 41.53
.2508 -4.99 -.8106 1.846
| .01 -.3166 -.02915 .07426

1 0 0 0 0 0

0 1 0 0 0 0
E = (7.24)
0 0 1 0 0 0

0 0 0 1 1 o

Consider the problem of controlling the above reduced'sixth order
model, using an output feedback control law so as to minimize a quadratic
performance index, To implement such a feedback control 2 time delay may be
expected due to the measurement of the output variables, Preliminary
analysis of this example has shown overshoots in the trajectories of Xy and
%, at t=0.005. So, we expect a time delay of this order of magnitude to
have a significant effect on the system trajectories. It has been seen that
delays of the order of 10-4 result in a significant deviation of the trajec-
tories from the nominal ones. Larger delays result in completely destabiliz-
ing the system. To reduce that effect we apply the design strategy described

in Section 4,2.

Consider the following parameters

4 (7.25)

Q=1
6 (7%?6)




The feedback gain matrix is

-.82x10°°

-.15x10"2

74x10”2

4

[ -.10x10

Two values of u» are simulated

-.26x107°

-.61x1073
211077

17x10”3

.58x10~%

.83x10™ %
-.3x1072

-.11x10°

2

.76x10
.63x10°

. 14x10°

-.21x10°
po—

(7.27)

7
4
4 (7.28)

4

in addition to the nomipnal value, i.e. zero.

The state trajectories are illustrated in Figures 7.16 - 7,21, It is seen that

the first three state trajectories show high sensitivity.

So, we choose S

with suitable entries so as to penalize their sensitivities more than the

other three.

Now, consider the same values of R and Q given by equations (7.25)

and (7.26) along with the following value of §:

S = diag[100, 100, 100, 10, 10, 10]

The feedback gain matrix in this case is

—
-.76x10"°

-.21x1072

.54x10'4

4

[ -.20x10°

-.21x10°

-.68x10"

5
3

11x107°

.14x10">

.38x10™4

.87x10° !

-.36x1072

-.10x1072

(7.29)
.69x10"7
.57x10”%
% (7.30)
.11x10
-4
-.19x20™%

The state trajectories illustrated in Figures 7.22 - 7.27.

The nominal

trajectories of this case are illustrated on a wider horizon in Figures

7.28 - 7.33 to demonstrate the stability of the system.

In order to obtain more satisfactory sensitivity consider the same

values of R and Q given by equations (7.25) and (7.26) along with the follow-

J»1M“__M“d‘H'“...___-_........n..........i..........‘...........--nnliilllllllllllllxl'
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ing values of §
S = [1000, 1000, 1000, 100, 100, 100} (7.31)

The feedback gain matrix in this case is

—

7]

73108 k0™ .21x107% .60x10”
-.23x1072 -.68x107° .88x10™+ .51x10™*
o 49x10™% 11x10™°  -.38x1072 a0t | Y
| -.23x10™ 13x107% -l1ox1072 -.10x107%

The state trajectories are illustrated in Figures 7.34 - 7.39.

From the plots associated with the above cases, we see that
sensitivity to small time delays is reduced due to our proposed design
strategy. We notice a sighificant improvement in sensitivity of the first 3
state trajectories that were penalized themost, It is observed in this example
that increasing S is reflected directly on the sensitivity reductionof the
different state trajectories. The choice of S givenby equation (7.31) has shown
satisfactory sensitivity for all of the six states as well as =~ acceptable transient
phenomena. The cholce of Q is kept unchanged in each trial of the values of S
because th2 resulting transient phenomena was acceptable, In fact it is improved
for some trajectories. For example, xz(t) illustrated in Figure 7.35 shows an
amount of undershoot which is less than that shown in Figure 7.23 which, in turnis
less than the one shown in Figure 7.17. The feedback gain matrices given by
equations (7.28), (7.30) and (7.32) have norms which are approximately equal
which means that not much increase in the control effort is needed, So, the

choice of R is unchanged with the different trials of S.
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CHAPTER 8

SUMMARY AND CONCLUSTONS

The work in this thesis is an addition to the study of trajectory
sensitivity of optimal control systems. The parameter with respect tc
which sensitivity is studied is a small undesirable time delay that might
cccur in a system designed nominally with zero delays. If the standard
linear regulator problem is used, trajectories may showunsatisfactory sensitivi-
ties tosmall time delays, This might be handled by adjusting the design para-
meters Q and R. But that approach may not be convenient because of the lack
of a direct theoretical basis for adjusting Q and R, In order to provide a
direct handle on the sensitivity a design strategy is proposed in which a
quadratic performance index which includes a sensitivity measure is minimized.
This sensitivity measure is a quadratic term of the sensitivity functions, de-
fined by (2.13), with some weighting matrix 8. Q, R and S can be adjusted
together to get a desirable behavior. Q penalizes state trajectories, R
penalizes the control and S penalizes trajectory sensitivity. Necessary condi-
tions of optimality are derived for all possibilities of delay occurrence.
Existence of an optimal control is investigated and it is proved that it exists
for small values of S, However, this is only a sufficient condition. In
Chapter 7, it has been seen numerically that such a control exists even for
relatively large values of S. Numerical algorithms are presented to solve the
resulting necessary conditions of optimality. Convergence of such algorithms

is investigated. These algorithms are shown to move in a downhill direction.

In other words, the performance index is decreased in each iteration. Analytical

proof for convergence is provided for subiterations within these algorithms.
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The proposed design strategy is applied to a continuous stirred-tank
reactor and a sixth order mcdel of the F100 turbofan engine. It has been
seen that the numerical algorithms work efficiently. Scveral values of Q, R,
and S are tried. It has been seen that the choice of S with a specific
weighting is reflected directly on the sensitivity of the different state
tratectories. This direct handle on sensitivity is the main advantage of
Tnis 3f sl lesign scneme. In both examples suitable values of Q, R and

4 e w s . .tcawn trajectories with acceptable transient phenomena

43 ee I 5:’1".5'.:1.’1[y,
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